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ABSTRACT 

We describe the skew primitive elements in a mult iparameter  enveloping 

algebra U = Uq,p-1 (g) and the links between cofinite maximal ideals 

in the corresponding quan tum function algebra Cq [G]. These results are 

applied to determine the coradical filtration for U, and to obtain a moduli 

space for mult iparameter  Drinfeld doubles. 

I n t r o d u c t i o n  

In the theory of quantum groups we encounter two kinds of Hopf algebras each 

of which may be regarded as a dual of the other. Let G be a connected simple 

algebraic group over C with Lie algebra g, Uq(g) the quantized enveloping algebra 

of g and Cq [G] the quantum function algebra of G. The duality referred to above 

consists of a pairing Cq [G] × Uq (g) , C of Hopf algebras which is nondegenerate 

in each variable. 

We can obtain a multiparameter version of this pairing in the following way. 

First Uq(g) is a quotient of the Drinfeld double Dq(g) of the quantized enveloping 

algebra of a Borel subalgebra of g. The definitions of Cq[G] and Dq(g) involve 

the character group L of G, and both of these Hopf algebras are graded by L × L. 

* Research partially supported by NSA grant MDA 904-93-H3016. 
Received July 10, 1995 and in revised form December 25, 1995 

285 



286 I.M. MUSSON Isr. J. Math. 

If p E H2(L,C*), then following lAST] and [HLT] we form the twisted Hopf 

algebras A = Cq,p[G] and D = Dq,p-l(g). Again there is a pairing A × D 

C, but this is no longer nondegenerate in the second variable. Accordingly we 

denote the radical of this pairing in D by R and set U = Uq,p-1 (g) = D / R ,  

the multiparameter quantized enveloping algebra. In this paper we study an 

important aspect of the duality between A and U, namely the relationship of links 

between maximal ideals of finite codimension in A to skew primitive elements 

of U. 

In more detail, we start by recalling the construction of A and D in Section 

1. We also show that R is the augmentation ideal of a certain group of central 

group-like elements in D. We describe this group explicitly and establish some 

of its properties. 

In the next section, which is the heart of the paper, we determine the links 

between cofinite maximal ideals of A and the multiplicities of these links. There 

is some overlap here with the work in [BG] on cliques of prime ideals in quantum 

function algebras, see 2.2 for details. By duality we obtain a description of the 

skew primitive elements of U. 

As an application of this work we determine the coradical filtrations of D and 

U. We also describe the Hopf ideals of D and the Hopf algebra maps between 

multiparameter Drinfeld doubles. In the one-parameter case results related to 

these are obtained in [B], [C], [CM 3] and IT], for comments see 3.5. We also 

obtain a moduli space for the Drinfeld doubles with q, G fixed. To describe this 

result, assume here that G is not of type D2~, t > 2 (some minor modifications 

are necessary in this case). Let F be the automorphism group of the Dynkin 

diagram of g. Then F acts on H2(L, C* ) and the quotient variety H2(L, C* ) /F is 

the required moduli space. In addition the group of Hopf algebra automorphisms 

of Uq,p-1 (g) has the form NFp, where N is the group of diagonal automorphisms, 

and Fp is the stabilizer of p in F. 

Until section 3.6, the base field is C and q is a nonzero complex number which 

is not a root of unity. We occasionally quote some results from [J] and [JL] in 

which q is an irLdeterminate. However, these results are still valid when q is not 

a root of unity. This can be shown by specializing q, see [J, 10.5.2] for some 

discussion. 

ACKNOWLEDGEMENT: I would like to express my thanks to the referee and to 

Ioana Boca for some helpful comments. 



Vol. 100, 1997 

1. Pre l iminar ie s  

QUANTUM FUNCTION ALGEBRAS 287 

1.1. Let g be a complex simple Lie algebra of rank n with Cartan matrix (aij). 
There are relatively prime positive integers {d~} such that (diaij) is symmetric. 

Let h be a Cartan subalgebra of g and {al . . . .  , a,~} a basis for the correspond- 

ing root system. We denote the lattices of weights and roots of g by P and Q 
n respectively. Let ~ l , . . . , ~ n  be the fundamental weights and P+ = ~ i = l l ~ i .  

We can define a nondegenerate bilinear form ( , ) on h* such that 

(wi, o~j) = 5ijdi,  (o~i, o~j) = diai j  

for all i , j .  Note that these equations imply that c~i = ~-~j(diaij/dj)~j. Let 

hi . . . . .  hn be the basis of h be such that  ~ ( h j )  = 5~ i. 

1.2. We recall some results from [HLT] on deformations of bigraded Hopf 

algebras. 

Let u C A2h and write u = ~ uijhi ® hj for a skew symmetric matrix (uij). 

We can view u either as an alternating bilinear form on h* or as the linear map 

u E End h given by 

u(x) = ~-~ uij(x, hi)hj for x E h. 
i,j 

Let tu E End h* be the transpose of u, • = - t u  and (I)+ = (I) :i: I. It is easy to 

show that  

u(~, ~) = (~x, ~) for all ~, ~ • h*. 

Now suppose h E C*\iT~Q and set q = exp ( -h /2 )  and 

p(A, #) = q½~(~") = exp(-hu(A, #)/4) for A, # • h*. 

Then p ( ,  ) is an antisymmetric bicharacter on h*. 

Suppose that L is a lattice in h* and that A = {~)(A,/~)ELxL AA,/~ is a L-bigraded 

Hopf algebra as in [HLT,2.1]. We can define a new L-bigraded Hopf algebra Ap 

which is equal to A as an L-bigraded coalgebra, has the same antipode as A, and 

has multiplication given by 

a.b =.p(A, A')p(#, #')-lab 

for all a E A~,#, b E A~,,#,. 
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Next let A and U be L-bigraded Hopf algebras and ([): A × U ~ C a bilinear 

pairing of Hopf algebras as in [HLT, 2.3]. We assume that 

( A ~ , u l U . r , 6 ) = 0  if A + # # 7 + 5 .  

The pair {A, U} is called an L-bigraded pair. By [HLT, Theorem 2.4] {Ap-,, Up} 

is an L-bigraded pair with pairing (])p given by 

(ax.~, lu-r,6)p = p(A, . ) , ) - l p ( , ,  ~ ) -1  (a~,.luw,6). 

Now suppose that { A  °p, U}  is an L-bigraded pair. We can form the Drinfeld 

double A ~ U as in [HLT, 2.3]. By [HLT, Theorem 2.6] A ~ L1 is an L-bigraded 

Hopf algebra and there is a natural isomorphism of L-bigraded Hopf algebras 

(A  ~ U)p ~- Ap  ~ Up. 

1.3. Let G be the connected simple algebraic group with maximal torus H such 

that L i e ( G )  = g and X ( H )  = L.  For 1 < i < n set q~ = q d ' , q i  = (qi - q ~ - l ) - l .  

Let U ° be the group algebra of X ( H ) .  Thus 

U ° = c [ k ~ ; A E L ] ,  k o = l ,  kAk v = k ~ + # .  

We set ki = ks,. The one-parameter quantized enveloping algebra is the Hopf 

algebra 

Uq(g) = U°[ei,  f i;  1 < i < n] 

with defining relations: 

k~ejk-~ 1 = q(~,aJ)ej,  

k~ l jk -~  1 = q-(~'~J) l j ,  

e i f j  -- y je i  = 6i jqi(kl  - ki-1), 
1--alj 

k e i e j e  i : O, 
k~--O qi 

1 E-aiJ I. 1 (_1) k [ 1 - a ~ j  ~ i - a i j - k f j f i k o  ' 
k Ji 

k=0 ql 

i f i  # j ,  

i f i # j ,  

where [m]t = ( t - t - l )  . . .  ( t m - t - m  ) and 

[ . q ,  

- [ k ] d m  - k ] ,  
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The Hopf algebra structure is given by 

/x(k~) = k~ ® k~, e(k~) = 1, S(k~) = k~ -1, 

A(ei )  = ei @ 1 + ki ® ei, A(fi) = A ® k71 + 1 ® A,  

e(ei) = e(fi)  = O, S(ei) = -k~-iei ,  S ( f i )  = - f i k i .  

We denote by Uq(b +) (resp. Uq(b-)) the subalgebra of Uq(g) generated by 

e l , . . . , e ,~  and k~,k E L (resp. fl  . . . .  , A  and k~,k E L). 

1.4. We now consider the Drinfeld double 

Dq(g) = Uq(b +) ~ Uq(b-) 

associated to the Rosso-Tanisaki-Killing form 

(I}: Uq(b+) ® Uq(b-) - +  C, 

see [HLT, 3.2] for more details. Thus 

Dq(g) = C[s~, t~ ,e i , f i ;  A E L, 1 < i < n] 

where s~ = k~ ® 1, tx = 1 ® k~, ei = ei ® 1, fi = 1 ® fi.  There is an isomorphism 

D ~ ( g ) / ( s ~  - t~; ~ e L) ---- U~(g) 

given by 

By [HLT, Corollary 3.3] {Uq(b+) °p, Uq(b-)} is an L-bigraded dual pair with 

kA 6 Uq(b±)-;~,~, ei E Uq(b+)_~,o, fi  E Uq(b- )o -a , ;  

in addition Dq (g) is an L-bigraded Hopf algebra with 

s~ E Dq(g)_~,~, t~ E Dq(g)x,_~, 

ei E Dq(g) -~ ,o ,  f~ E Dq(g)o.~.  

and 

We have 

A e i  = ei ® 1 + si ® ei 

A k  = k ® t p + l ® k .  
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1.5. Let M be a leff Uq(g)-module. We say an element x E M has weight # E L 

if k~x = q(~,~)x for all A E L, and denote the subspace of elements of weight # by 

M~. Set L + = L M P+.  It is well known that for all A E L + there exists a unique 

finite-dimensional simple Uq(g)-module L(A) with highest weight A, and lowest 

weight w0A where w0 is the longest element of the Weyl group W. If L(A)~ is 

one dimensional, choose vt, such that L(A), = Cv,.  

We denote the category of finite-dimensional Uq(g)-modules which are direct 

sums of the modules L(A) by Cq. The category Cq is closed under the formation 

of tensor products and duals. 

For M E obj(Cq), f E M*, v E M we define the function cf,v E Uq(g) 0 by 

cs,v(u) = S(uv) for e uq(g). 

The quantized function algebra Cq [G] is defined as the dual of Uq(g) with respect 

to the category Cq, that is 

Cq[G] = C[cs,v; v E M , I  E M * , M  E obj(Cq)]. 

Then (2q [G] is an L-bigraded Hopf algebra with 

Cq[G]~,u = span{cs,v; v E Mu, f E M ~ , M  E obj(Cq)}. 

Since Cq [G] C_ Uq(g) °, there is a duality pairing 

(I): Cq[G] x Dq(g) --~ C 

and this makes {Cq [G], Dq(g)} into an L-bigraded dual pair [HLT, Theorem 3.4]. 

1.6. We now apply the twisting procedure outlined in 1.2 to the L-bigraded 

pair {Uq(b+) °p, Uq(b-)}. We call 

Da,p-l(g ) = (Uq(b +) M Uq(b-))p-1 ~ Uq,p-~(b +) ~ Uq,p-~(b-) 

the multiparameter Drinfeld double. As a C-algebra it is generated by elements 

ei = ei ® l, f~ = l ® f~, s~ = k~ ® l, t~ = 1® k~,~ E L, 1 < i < n. These 
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elements satisfy the relations 

8~ttt -~ t t t s~  

t -1  

s~ejs_~ = q-(¢-~'a~) ej, 

s~f js_~ = q(~_A,aj) f j ,  

t~ejt_~ = q(¢+~'a~)ej, 

t~f j t_~ = q-(¢+~'~J)fj. 

These relations are given in the one-parameter case (i.e. when p = 1) in [HLT, 

3.2]. In general they can be obtained by the twisting process described in 1.2. 

The other relations, known as the Serre relations, can be conveniently expressed 

in terms of various adjoint actions of D = Dq,p-1 (g). Let S be the antipode of 

D and S' the composition inverse of S. For a, b E D we set 

adr(a)(b) = ~ S(a(1))ba(2), 

= S ' (a (2 ) )ba (1 ) .  

For example ad~(ei)(b) = bei - eis~lbsi. Using this and induction we obtain in 

the one-parameter case 

" [] (ad,(ei))~(ej) = ~-~(_l)kq~l-a~-~)k n e~keje~-k 
k=0 k q~ 

and hence (ad~(ei)) 1-~.  (ej) = 0 for all i , j .  Using [CM2, Lemma 3.2], it follows 

that this relation holds also in the multiparameter case. Similarly, the Serre 

relation for fi ,  f j  may be written in the form ad~(fi)) l-~'J(f j)  = O. 

Remark: Two additional adjoint actions adl and ad' t are defined in [CM2]. In 

the Serre relations above we may substitute adt(ei) for ad~(ei) and ad~(fi) for 

ad~(f~). 

1.7. We now consider the L-bigraded dual pair {Cq,p[G], Dq,p-~ (9)} obtained 

by twisting the pair {Cq [G], Dq(g)}. The twisted pairing (lip is given by (alu)p = 

p(A, "~)p(p, 6)(alu) for all a E Cq,p[G]~,,, u E Dq,p-~ (g).y,~ [HLT, Theorem 3.6] 

If M is an object in the category Cq of left Dq(g)-modules defined in 1.5, we 

can make M into a left Dq,p-~ (g)-module by defining 

u . x  = 5 -  )ux 
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for all u E Dq(g).~,~,x E M~. By [HLT, Theorem 3.8] Cq,p[G] may be identified 

with the Hopf algebra of coordinate functions on Cq,p, that  is we have for all 

f E M*, v E M and u E Dq,p-~ (g) that  

1.8. We introduce some further notation. Let R be the radical of the pairing 

(,)p in D = Dq,p-,(g), that  is R = {d E D[( ,d)p : 0}. Since (,>p is a pairing 

of Hopf algebras, R is a Hopf ideal of D. Later we refer to R as the radical of 

D. We set U = Uq,p-1 (g) = D / R  and call U the mult iparameter  (quantized) 

enveloping algebra. Let D + (resp. D - )  be the subalgebra of D generated by the 

elements ei (resp. fi), 1 < i < n and let D o be the group algebra of the group 

T = {s~t~, A, # E L}. We denote the images of D + and D O in U by U + and U °. 

There is a triangular decomposition D = D -  ® D O ® D +. If Z is any subgroup 

of T, V(Z)  denotes the augmentation ideal of Z in D, that  is the two-sided ideal 

of D generated by the elements z - 1, z E Z. If M is any bi-ideal of D, we set 

M t = {g E T i g -  1 E M} .  

We define 

47riZ 
zL = {s t. e Tl(O-  - e - - K -  for all c L}. 

Clearly ZL C ZQ. I t  follows from the relations in 1.6 that  ZQ is the intersection 

of T with the center of D. 

Note that  D can be made into a Q-graded algebra by setting D~ = 

~ + ~ = ~ D ~ , ~  for c~ E Q. We have s~,t~ E Do, ei E D _ ~  and f/ E D ~ .  

For A E L we have s~t~e~s_~t_~ = q(~+~-o-~'~')e~ = q2(~'~*)e~. I t  follows that  

D~ = {x E DIs~t~xs_~t-~ = q-(2~'~)x}, that  is the Q-grading on D is deter- 

mined by the action of the elements s~tx by conjugation. Therefore any ideal of 

D is homogeneous for the Q-grading, and any factor algebra of D is Q-graded. 

We can now characterize the radical R. 

THEOREM: With the above notation R = V ( Z L ) .  

Proof: I f a  = ~-]~n~ai E Q we define [a[ = ~ n / .  Then setting Um = ~-]~l~l=m Us 

makes U into a Z-graded Hopf algebra. It  follows from [R, Theorem 3] tha t  U 

has a triangular decomposition 

U = U -  ® U ° ® U  +. 
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Next we claim tha t  D + M R  = 0. Set D + = D + n D ~  where D = ®D~ is 

the Q-grading  defined above. I t  suffices to show D + f~ R = 0 for all ct E Q. By 

the na ture  of  the  grading on D +, if d E D +,  then  d E Da,o and we have for all 

a E Cq,p[G]a, .  t h a t  

(aid}p = p(A, a)(aid}. 

Thus  the assert ion reduces to the 1-parameter  case. In this case 

Dq(g) / (sx- tx)  -~ Uq(g), and we claim the induced pair ing ([): Cq [G] x Uq(g) ~ C 
is nondegenerate ,  in Uq(g). In fact ([u) = 0 if and only if u E M ann L(A) for all 

A E L +. However by [J, L e m m a  7.1.9] or [JL, L e m m a  8.3] this intersection is 

zero. The  claim follows easily. Similarly D -  M R = 0. 

Now let {ui}, (resp.{wl}) be C bases of D -  (resp. D+) .  If  ~ ul ®vlj ®wj E R 
with vij E D O then  since D + m a p  isomorphical ly onto U + we have vij E R for 

all i, j .  Thus  R is generated by its intersection with  D °. 

Since R Cl D o is a Hopf  ideal of the group algebra D o = C[sat.: .k,p E L] it 

is equal to the augmenta t ion  ideal of the subgroup {sat.: (, sat.)p = 1}. Now 

(,sat.)p = 1 if and only if f (sat . .v)  = 1 for all M E obj(Cq,p),v E MZ and 

f E M~ such tha t  f(v)  = 1. We have 

](sat, .v) = p(~, 2,~ - 2t~)f(sat,v) 
= q~(.-a,~)+(a+. ,~)  

= q(~+u-¢_ a,~) 

I t  follows tha t  {sat,: ( ,  satu)p = 1} = ZL. 

Remark: For la ter  use we record the fact t ha t  for v E M~, f E M*~  such tha t  

f (v) = 1, we have 

ti(es,v ) = q(¢+~,,~) 

and 

si(cl,v) = q-(V_a~,Z) 

1.9. PROPOSITION: If8att~ E ZL then (A, A) = (p, #) 

n Proof'. If  ,~ E L and A = ~ i = 1  Aiai with )~i E Q, we set ~ = ( )~1dl , . . . ,  Andn) E 

Qn. Let  B be the symmet r i c  ma t r ix  B = (aij/dj). Then  (~, #) = ~_B# t. Now 

let c~j = ( ¢ ~ i , ~ j )  and C = (c~j). Then  (~P±#,~k) is the k th ent ry  of the vector  
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p ( B C +  1). There exists a positive integer N such that N~k • L for k -- 1 , . . . ,  n. 

Thus if sat ,  • ZL we have 

+ t t - ( A - p ) B C  mod~riQ 
- -  - -  - -  h 

Since B C B  is skew symmetric, this implies 

(A + p)B(A - tt) t = (A - #)BCB(A - tO t 

- 0  rood ~riQ. 
h 

However (~_ + tt)B(A - p)t • Q and h ~ 7riQ, so pBp t = ABA t. 

An analogue of the next result for g = gl(n) is proved in [CM2, Lemma 4.2]. 

COROLLARY: We ~ave 

{iX • LIs~ • ZL } = 0 = {~ • L i t .  • ZL } 

Proof." This follows since by [H, 8.5] the bilinear form ( , ) is positive definite 

on L ®z Q. 

2. L inks  b e t w e e n  cof in i te  p r i m e s  of  Cq,p[G] 

2.1. Let A = Cq,p [G], U = Uq,p-1 (g) and define ideals I ± of A by 

I + = (cs,v^lf E (Uq,p-~(b+)L(A)i) ±) 

and 

I -  = (Cf,v,~o^l f • (Uq,p-~(b-)L(A)~oA)±). 

The ideals I ± are denoted I~  in [HLT]. We set I = I + + I - .  

Let H be a maximal torus of G with coordinate ring C[H]. There is an algebra 

map ~: A ) C[H], c , ) ~c defined by ~c(h) = Xh(C), where Xh is the one- 

dimensional representation of A determined by Xh (Cg,v) = # (h)g (v) for v • L (A), 

and p • L(A)*. Thus if g(v) = 1, the image of Cg,v under ~ is the character p of 

H, which is a unit in C[H]. 

Finally we note that all finite-dimensional simple A-modules are one dimen- 

sional and annihilated by I,  and that ker ~ = I,  so that ~ defines an isomorphism 

A / I  -~ C[H]. This is shown in the 1-parameter case in [J, Lemma 9.3.11] and a 

similar proof works in general. 
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2.2. If H is a bialgebra, we denote the dual of H by H*, as in [J, 1.4] and 

the set of group-like elements of H by G(H). By the preceding remarks any 

maximal ideal of finite codimension in A has codimension one, and thus has the 

form my = ker X for some group-like element ~ of A*. 

Let m and m' be codimension one ideals of A. We say that m' is linked to 

m and write m' ~ m if m'm is strictly contained in m M m'. In this case the 

dimension of (m V} m ' ) / m ' m  as a k-vector space is called th~ multiplicity of the 

link from m' to m and denoted mult(m', m). A more general definition of a link 

between prime ideals of a Noetherian ring and of the multiplicity of a link is given 

in [Jat]. The connected component of the graph of links of A containing P is 

called the clique of P. In the one-parameter case the cliques of arbitrary prime 

ideals of A are described in [BG, Theorem 0.5] in terms of certain subgroups 

of Aut(A). In the case G -- SL(n), the subgroup yielding the links between 

prime ideals of finite codimensiom as well as the links themselves are described 

explicitly in [BG, Example 6.12]. On the other hand the issue of multiplicities, 

which will be crucial to us in Section 3, is not discussed in [BG]. 

We denote the image of the group-like elements si, ti of Dq(g) in U by the 

same symbol. Some of these group-likes may become equal in U. Thus we regard 

f~ = { s l , . . . ,  s~, t l , . . . ,  t~} _C U _C A* as a set with multiplicities. We can now 

state the main result of this section. 

THEOREM: I f  m x, ",* m x then one of the following holds: 

(a) \ = X' and mult(rnx,, rn<) = n, 

(b) \ , \ - 1  C • and m u l t ( m # , m x )  = [{g C ~-~]XIX - 1  = g}]. 

2.3. We need a result giving commutation relations in A from [HLT]. Let CZ 

be the canonical element of Dq,p-1 (g) associated to the nondegenerate pairing 

L%,p-l(b+)-~,o ® Uq,p-~(b-)o,-z ~ C and for M , N  E objCq,p let C: M ® N --+ 

M Q N be the operator given by multiplication by C = ~ZeQ+ CZ. 

LEMMA: For A,A' C L +, let 

g c L ( A ' ) *  v, f E L ( A ) *  w vEL(A ' )~ ,  VAEL(A)A 

and 

V~,oA E L(A)~oA. 
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(a) 
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are such that 

(b) 
where 

and 

are such that 
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eg,vc/,v^ = q(O+A'~)-(O+"'V)(C/,vACg,v -b ~ C/.,vAcg.,v), 
vEQ+ 

Isr. J. Math. 

f. E (Uq,p-~(b+)f)_.+. 

g. e ( G , : , ( b - ) g ) _ . _ .  

/.eg.= ~ c~(leg); 
fleQ+ \{o} 

C/,v~o^ Cg,v = 't ~.g,v,:I,v~o~, + ~-~ cg~,vc: . . . .  o^), 

f .  e (Uq,p-~(b-)f)_~,_. 

g. c (G,p-~ (b+)g)_.+. 

~eQ+ \{o} 

Proof" See [HLT, Corollary 3.10] for (a); (b) is proved in a similar way. 

2.4. We let J be the intersection of the annihilators of the two-dimensional 

A-modules. If m and m' are codimension one ideals of A, then since m / m ' m  is 

a semisimple A/m'-module, we have J C_ m'm. Hence as far as the computation 

of mult(m',  m) is concerned we may pass to the algebra A/J .  Clearly 12 C J. 

PROPOSITION: Let A E L + and g E L(A)*_,. 

(a) I f r / ~  { A , A - ~ I  . . . . .  A - o , }  thencg,, A E J. 

(b) I f  r] ~ {woA, woA + a l , . . . , w o A  +an}  then cg,v~o A E J. 

Proof The idea of the proof is to find a relation similar to 2.3(a) in which all 

terms except the one containing cg,~ A belong to J.  We can assume g ~ 0. 

Since L(A)* has lowest weight - A  we have 

~e~L(A)*= ~ L(A);, 
i=1 v:/:- A 
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so we may assume g = e i f  for some i and f E L(A)*u where # = ~ + a i .  Now by 

the representation theory of Uq(sl(2)) applied to the algebra generated by ei, fi  

and k~l , f ig  ¢ O. Choose v • L(A)u with (fig)(v) ~ O. 

We now consider the relation given in Lemma 2.3(a). Since p ~ A and ~ ~ # 

we have f(vh) = g(v) = 0. Hence cI,v ̂  and cg,. belong t o I .  I f v  • Q+ and 

c9~,~ ~ I we have g,(v) ~ 0 and thus ~ + v  = #, which gives u = hi. For a similar 

reason cl~,~ A • I for all v. Now Ca, ( f  ® g) is a scalar multiple of e J  ® fig so 

Lemma 2.3(a) gives C~,LvACLg,v • 12. However, since fig(v) ¢ O, CAg,v maps to 

a unit mod I and hence mod 12. Since g = e i f ,  we obtain Cg,v A = c~,L, ̂  • 12. 

This proves (a) and the proof of (b) is similar. 

2.5. We examine the ideal I / J  of A / J  more closely. For A • L there exists 

a unique element w • W such that  wA • L +. The module L(wA) has A as a 

weight of multiplicity one. Choose v • L(wA)A and v* • L(wA)* A such that  

v*(v) = 1 and set gh -- cv*,~. We have gh(s~t~) = q(O+u-O-~,h) by the remark 

at the end of 1.8. Next for each simple root ai and A • L +, d i m L ( A ) h _ ~  = 0 

or 1, since A - ai  occurs as a weight of the corresponding Verma module with 

multiplicity one. Also L(A)A_~, ¢ 0 if and only if w = fiVh ¢ O. In this case 

there is a unique element w* • L(A)*A+a, such that  w*(w) = 1 and we write 

c + (A) for C~*,vA. Recall the Q-grading on V defined in 1.8. Set U + = ( ~ ¢ o  U~- 

It  is easy to verify that  

- ® U ° ® U+ +)  = 0 

c+(A)(V - ® V°)~ = 0 if/3 ¢ ai 

and 

c (i)(fis t.) = 

Clearly c~ (A) is uniquely determined by these conditions. Now by Proposition 

2.4, I+ /J  is generated by the images of the elements c~(A) for 1 < i < n and 

A E L +. Now for A,#  E L + such that  A - a i  (resp. # - a i )  is awe igh t  of 

L(A) (resp. L(#)) we have gh_uC+(/~) = c+(A). The elements gA-~ are units 

modulo I and hence modulo J .  For each simple root hi, we now fix A such that  

L(A)A_~, ~ 0 and set c + = c+(h).  Then I+ /J  is generated by the images of the 

elements c +, 1 < i < n. 

Similarly for each simple root a~ we fix A such that  L(A)~oA+~ , ¢ 0, let 

u* be the unique element of L(A)*__~ooh_~, such that  u*(eiV~oh ) = 1 and set 

c~- = c~.,V~o A. Then we have 
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LEMMA: The  ideal I / J  is generated by the images of  the elements  c~ 1 < i < n. 

2.6. Let Xl , - - - ,Xm be normal elements of a C-algebra R and I = ~ x ~ R .  

Suppose that  R = R / I  is commutative and 12 = 0, so that  I is an R -  

bimodule. Suppose also that  there are nontrivial automorphisms ai of R such 

tha t  x i r  = a~(r)xi  for i = 1 , . . . , m .  If X: R --* (2 is a C-algebra map, let m x be 

the ideal of R which is the preimage of ker X under the canonical map R ~ R. 

LEMMA: I f  mult(m×, , m x  ) > 0 then one o f  the following holds: 

(a) X = X'ai for some i and 

mult(mx' ,  rex) < I{ilx = x % } l  

2 and mult(mx, rex) = dim mx/m2x.  (b) X = X', I c_ m x 

Proof: Suppose first that  )C ~ )¢f. Since the images of m× and m×, in R are 

distinct, and all links in R are trivial, we have 

m x N m x, = m×,m x + I.  

Also for all r, s E R and 1 < i < m,  mx,  m x contains the elements (s - )C'(s))x~ 

and x i ( r  - x ( r ) )  = (ai(r)  - x ( r ) )x i .  

If  x(r )  ¢ X'ai(r)  for some r E R, let s = ai(r) ,  then rnx ,m x contains 

( ( s  - x ' ( s ) )  - ( ~ i ( r )  - x ( r ) ) ) x ~  = ( x ( r )  - X ' ( ~ ( r ) ) ) x ~  

and hence xi  E m x , m  x. 

On the other hand, if X = X'ai, then since ke rx '  has codimension one in R we 

see that  

Therefore 

whence 

R x i  = Rxi = (C + ker X')xi C_ C xi + m×,m x. 

IC_ E C x i + m x ' m x  
X=X' Ct i 

m x n m x ,  = m x , m  x + E C, xi  
X=X' O'I 

and thus leads to the conclusion expressed in (a). 

Finally if X ~ - X then, since cri ~ 1, the above argument gives xi E m~x for 

2 This gives the conclusion in (b). each i, and so I C_ mx .  
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2.7. Suppose H is a bialgebra, C a subcoalgebra of H*, and 9, h • G(C). We 

set m 9 = Kerg,  and 

Cg Ac Ch = A v l ( g ®  C +  C N h). 

When C = H* we simply write A for AC. If x • C is such that  A(x) = 

g®x+x®h,  we say that  x is (g, h)-primitive. We denote the set of (g, h)-primitive 

elements of C by Pg,h(C). The following result is implicit in [CM1, Proposition 

1.1]. For the convenience of the reader we give a self-contained proof, based on 

[Sw, Proposition A.4]. 

LEMMA: For 9, h • G(H*) there is a natural isomorphism of vector spaces 

C g A C h  ~,, ( m g n m h ~ *  

(29 + C h  \ mgmh } 

Proof Let C = H*. The pairing C x H ~ C induces linear maps R: C ~ mg 

and S: C ~ m~, with K e r r  = Cg and KerS = Ch. Thus R and S induce 

injective maps R, S making the following diagrams commute: 

C X ~ * C s , * m 9 m h  

\ /  \ /  
c/cg c/ch 

where zrl, 7r2 are the natural maps. 

By [Sw, Proposition A.2] there is a natural  inclusion p: mg ® m h 

(rng ® mh)*. Let T: C @ C , (m 9 ® mh)* be the linear map induced by 

Then we have another commutat ive the pairing (C ® C) x (H N H) - - ~  C. 

diagram 
C @ C  . . .  T " (m 9 @mh)*  

C/eg ® C/eh 

Since o(R ® S) is injective, it follows that  

e g A e h  = A - l ( K e r  7rl ® 7r2) 

= A - l ( K e r  T) 

= {S • clAf(m~ ® mh) = 0} 

= {f • CIf(m~mh) = 0}. 
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Thus an element f of Cg A Ch may be regarded as a functional on H which 

vanishes on mgmh, and the isomorphism is obtained by restricting f to m s N mh. 

2.8. Proof of  Theorem 2.2: Write m(x' ,  X) for mult(mx,, m×). We apply Lemma 

2.6 to the algebra R = A / J  and I the ideal of R generated by the images of 

the elements c~ for 1 < i < n. Note that 12 = 0 and R = R / I  ~- C[H] is 

commutative. Suppose that w* E L(A)*_A+~,,g E L(A')*_~ and v • L(A')~ are 

such that  w*(f~VA) = g(v) = 1 and c + = c~*,v^. If we denote the images of c + 

and cg,v in R by x, c respectively, then by Lemma 2.3(a) 

cx = q(O+a"~)xc. 

Thus if ~ is the image of c in R we have x-d = a+(-d)x, where a + • A u t R  is 
t + defined by a+(~) = q-(¢+~"~)~. Using Remark 1.8 we see that x't:( 1 = X ai • 

Similarly if y is the image of c~- in R, the left and right bimodule structures of 

the ideal yR  are related by y~ = a~(-d)y, for ~ as above, where a~- is defined by 

a~-(~) = q(¢-~,7)~. It follows from Remark 1.8 that , -1 =Xai ,  - X si 

Therefore i fm (x  ', X) > 0, Lemma 2.6 implies that either X t = X and m (x  t, X) = 

n, or X'X -1 • ~, and m(x' ,  X) < ]{g • ~tIX'X -1 = g}l. By Proposition 1.9, we can 

only have X' = Xsi for at most one i, and X' = xtj for at most one j .  Conversely, 

if both these conditions hold, then e~x and fjtjx a r e  (X', X)-P rimitive elements 

of A* whose images are linearly independent rood CX' + CX. Thus Lemma 2.7 

shows that m(x' ,  X) = 2. Similarly if X' = Xsi and X ~ # xt j  for any j ,  then 

m(x ' ,  )~) < 1, and since eix is a nontrivial (X', X)-primitive, we have equality. 

The remaining case where X' = ~t~ and X # X'sj for any j is handled in the same 

way. 

The next result follows from Lemma 2.7 and the proof of Theorem 2.2. 

COROLLARY: I f  g • G(A*),g # 1 then any (g, 1) primitive element x in A* can 

be written in the form 
n ~t 

x = a ( g -  1 ) + E b i e i =  E c i f i t i  
i = 1  i = 1  

where a, b~, c~ • C, bi = 0 unless g = s~ and c~ = 0 unless g = ti. 

Remark: Theorem 2.2 implies that there are n linearly independent 

(1, 1)-primitives in the Hopf dual of Cq,v[G ]. In the case where q is an inde- 

terminate a description of the Hopf dual of Cq [G] is given in [J, Proposition 

9.4.9]. 
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3. T h e  co rad ica l  f i l t r a t i on  and  H o p f  a l g e b r a  m a p s  
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3.1 We first determine the coradical filtration on D and U. More generally 

let Z be any subgroup of ZL, D = D/V(Z)  and denote images in D by the 

overbar. Then D has a triangular decomposition 9 = D ® 9 o ® 9 +. We set 

B - -  D ® 9 0  , C - - ~ ° ® 9 + ,  B(0) = C(0) = ~ ° ,  B(1) = }_.~fi D-_--o, C(1) = 
--0 

~ a i D  , B(m) = B(1) "~ and C(m) = C(1) 'L Then B = (~m>oB(m) and 

C = (~m>O C(m) are graded bialgebras. Note that 9 -- B ®~o C. Set D(m) -- 

~ + j = m  B(i) ®~0 C(j). Then D = t~m>0D(m)  is a graded coalgebra. For 

m > 0 set 9 TM : (~,_<m D(n).  

91 It is easily seen that  ~ = (D1) TM, so generates D as an algebra. Also 

AD 1 C D 1 ® D ° + D ° ® 9 1 .  By [M, Lemma 5.5.1], { 9  TM } is a coalgebra filtration of 

and ~o  contains the coradical of D, that is the sum of the simple subcoalgebras 

of D. Since ~o  is spanned by group-like elements, ~0  equals the coradical of D, 

and D is pointed. The nth term 9 (") of the coradical filtration of 9 is defined 

recursively by setting 

~(n) = A _ l ( 9 ® - ~ ( n - 1 )  q_-~-0 ®-~). 

The coradical filtrations of B, C are defined similarly. 

THEOREM: For all m > O, 9 (m) = 9 "~. 

Proof: We first make some reductions as in the proof of [CM3, 3.7]. By [CM3, 

Lemmas 2.2 and 2.3] it is enough to show that B (1) = B(0) ® B(1) and C (1) = 

C(0) @ C(1). To prove the claim about C, it is enough by [M, Theorem 5.4.1] to 

show that any (g, 1) primitive element x of C is contained in C(0) ® C(1). 

Let U -> = Uq(b+), and let ¢: C ~ U -> = U ° ® U + be the natural map. Also 

let C = t ~ s e q  Cs, U > = ~ Us be the Q-gradings defined as in 1.8. We may 

assume x E Ca • If a = 0, then x E Co = C(0), so we can assume in addition 
--+ 

that a > 0. Arguing as in [CM3, 3.7], this implies that  x E D s . Therefore 

y = ¢(x) E U + is (¢(g), 1) primitive. However A(y) = y ® 1 + ks ® y mod terms 

in ~+ ~= ~  U~ ® U >. This forces ¢(g) = ks ¢ 1. Hence by Corollary 2.8 y = Aei 
3~0,s 

for some i and ~ E C Since the restriction of ¢ to 9 + is an isomorphism by 

Theorem 1.8 we have x = ~ i  E C(1) as required. 
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3.2 Let K be the ideal of D generated by e l , . . . , e ~  and f l , - . - , f ~ .  Note that  

siti - 1 E K for all i. Also K is a Hopf ideal and D / K  is isomorphic to a group 

algebra. 

THEOREM: I f  M is any bi-ideal of D, then either K C_ M or M ~ C ZQ and 

M = V(Mi) .  In particular M is a Hopfideal. 

Proo~ The proof is similar to the proof of [CM3, Theorem 3], but we repeat 

some of the details for the convenience of the reader. 

Suppose first that we can find an element s~t~, in Mt\ZQ.  Then there is a 

simple root a j  such that (+_+~- ~+#,  aj) ¢ 4_~__._ZZ. Since M contains (s~t, - 1)ej 

and ej(s~t~ - 1) it follows easily that ej E M. Since ej f j  - f jej  E M we then 

get sjtj  E M t. We can repeat this argument whenever aij ~ 0 to get ei, fi E M. 

By the connectedness of the Dynkin diagram, we have K C M. 

Now suppose that M t C_ ZQ, and let - denote the natural map - :  D ---+ 

D / V ( M  t) = D. If M ¢ 0 then by [M, Theorem 5.3.1], M N D(~) ¢ 0. From 

the description of 9 (1) given in Theorem 3.1, and the fact that M is Q-graded, 

we g e t M ~ - °  ¢ 0 ,  M M ~ i D  ° ¢ 0 o r i M f i D  ° ¢ 0 .  HoweverMM~-°  = 0 

by construction, and we may assume M M gi~-o ¢ 0. If ~ j  )~jgigj E -M where 

the gj are distinct group-likes and the coefficients +~j are non-zero, we obtain 

+~j (gigj ® gj + ~igj ®-digj ) E M ® D + D ® M. However the images of D ®  ei-D (°) 

and ~ ® ~ ( o )  in D / M  ® D / M  have zero intersection, and the images of the group- 

like elements gj are linearly independent in D/M,  so this gives gigj E M for all 

j .  Since gj is a unit we have ei E M. As in the first part of the proof, this implies 

siti E M +, a contradiction. 

3.3 We determine the Hopf algebra maps between multiparameter Drinfeld 

doubles. However there is a minor point which we take care of first. As noted in 

[HLT, 2.1] the isomorphism class of Dq,p-~ (g) depends only on the eohomology 

class [p-] i n H 2 ( L x L ,  C *) of the 2-cocycle ~': ( L x  L) x ( L x L )  ) C* defined by 

= , , ) - 1 .  

Of course ~v~ depends only on the image ~o] of p in H2(L, C*), but in certain 

cases it is possible for a non-identity element of H2(L,C *) to yield a trivial 

deformation. The reason behind this is that Dq(g) is graded by the subgroup 

= {(+~,p) E L x L I £ + #  E Q} 
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of L ×  L. 

Set Zh = {u E A~hlu(L × L) C 4,iz~ and denote the set of multiplicatively 
- -  h J 

antisymmetric n × n complex matrices by 7-/. If u E ASh and p: L × L 

C* is defined, as usual by p()~,p) = exp(-~u()~,p)) ,  there are isomorphisms 

H2(L,  C*) ~- 7-I ~ A2h/Zn,  under which the cohomology class of p corresponds 

to the image of u, [HLT, Theorem 2.7]. 

Now set Zh = {u E A2htu(L × Q) c_ - ~ -  . _ _ 47riZ} Since Q c L, we have Zh C Zh. 

If u E Zh and p is defined as above we have p(A,#) = ±1 for A C L, p C Q. 

Using this it follows that io(a,/3) = 4-1 for a, ~ E L. Thus if w l , . . . ,  wm is a basis 

for the free abelian group L, then the multiplicative matrix 7 corresponding to 

the restriction of i~ to L × L has entries "ylj = p'(wi, aj) /~(wy,  wi) = 1. Hence the 

image o f f ' i n  H2(L, C* ) is trivial. Since Dq(g) is graded by L we have established 

the following result. 

LEMMA: The isomorphism class of  the Hopf  algebra Dq,p-~ (g) depends only on 

the image of  u in A2h /Zh .  

We remark that if L / Q  is cyclic, then using elementary divisor theory and the 

fact that u is skew-symmetric it follows that Zh = Zh. In this case the foregoing 

remarks are unnecessary. Furthermore, if L / Q  is not cyclic then from the list of 

fundamental groups contained in [H, page 68 and exercise 4, page 71], it follows 

that G is simply connected of type D2t, ~ _> 2. 

3.4 Let (a~ij) be a second Cartan matrix associated to the simple Lie algebra 

g' of rank m and suppose {d~} are relatively prime positive integers such that  

(d~a~j) is symmetric. Let G ~ be a connected algebraic group with Lie algebra 

g' and character group L'. If Q~ is the root lattice of g, then Z~ is defined by 

Z'h = {u' E A2h'Iu ' (L ' × Q') c 4~izl Let p' - a J" C A2h ' /Z~  and choose u' E ASh ' 

such that p'()~,p) = e x p ( - } u ' ( ~ , # ) ) ,  for ~ ,#  E L. Set ~ '  = - t u ' .  We con- 

sider a second multiparameter Drinfeld double D ~ = D ~ q,(p,)_~ (g~) with generators 
I I n I e~, f~ sk, t~, )~ C and relations as in 1.6 with ei, f~, s~, t~, • replaced by 

' ' ' t ~ , ¢ ~ .  

First, we describe some Hopf algebra automorphisms of D. Let N = (C*)~ and 

for a = (al . . . .  , a , )  ~ N define the diagonal automorphism ¢~: D ) D by 

¢ o ( s ~ )  = s~,  Ca(t~)  = t~,  ~ ¢ L, 

¢ ~ ( e i )  = a i e i ,  ¢ ~ ( f i )  = a ( l f i ,  i = 1 . . . .  , n .  
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Let  n = {1 . . . .  , n}. A n  inject ive map  a:  n ----+ m is an inclusion of Dynk in  

d i ag rams  if  (ai ,aj)  = (a~(i), t ao( j ) )  for all i , j  E n. I f  this  is the  case then  

a i  ~ ~o(~) induces a m a p  a:  h* ~ (h')* which carries Q into Q'. Suppose  

t h a t  a ( L )  c_ Lq If  u' E A2h ', we denote  by °u' the  pul lback  of u ~ to  A2h, defined 

by 

= 

The  pul lback  ~p~ of p' E A2h~/Z~ is defined similarly.  

Suppose  u = ¢  u ~, and  set p~(A, p) = q½~'(~") for A, # E L ~. Then  a induces a 

Hopf  a lgebra  m a p  a :  Dq,p-Z (g) , D'q,(v,)_, (g') such tha t  

' = , = to(~), a(s~) So(~), A E L, 
, 

= e~(~), a ( f i )  -- f ' ( i ) ,  i = 1 , . . . , n .  

The  case where ¢: D ----, D '  is a Hopf  a lgebra  m a p  such t ha t  el  . . . . .  e,~, 

f l , - . . ,  f,, E Ker  ¢ is r a the r  uninteres t ing,  so we concent ra te  on the  o ther  possi-  

b i l i ty  allowed by Theo rem 3.2. 

THEOREM: Let ¢: D , D' be a C-l /near  Hopfalgebra m a p  such that (Ker 0) t 

C_ ZQ. Then we can write ¢ uniquely in the form ¢ = a¢~, where Ca is a diagonal 

automorphism and cr an inclusion of Dynkin diagrams such that or(L) C_ L ~ and 

p = ~p~. hi particular ¢ is injective. 

Proof'. For each i E n,  ¢(e i )  is a nontr iv ia l  (¢ (s i ) ,  1) p r imi t ive  in D ~. Hence by 

Coro l l a ry  2.8, 

¢(e i )  = ajej + bjf j t j  + c(¢(s i )  - 1) 
j = l  

and bj = 0 unless ¢(s~) = J A p p l y i n g  ¢ to where  aj = 0 unless ¢ (s i )  = sj tj. 

the  equa t ion  sieis~ -1 = q(~"a~)ei shows tha t  ¢(e i )  = ajej for some j E m and 

some nonzero aj. Thus  there  is a m a p  a:  n ) m such t ha t  ¢(s~) = so(1) 

and  ¢(e i )  = ao(i)eo(i) • By Corol la ry  1.9, a is injective. In  add i t i on  we have 

(ai, ai) = (ao(1) ,ao( i ) ) ,  thus  di = do(i). Similar ly  there  is an inject ive m a p  

7: n , m such t ha t  ¢ ( t i )  = t~(i) and we have ¢ ( f l )  = c~(i)f~(i) for some 

nonzero  c , (0 .  Now app ly ing  ¢ to the  equat ion  

( e J i  - S ick)  - -   (si - - 1 )  
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shows that  (r -- ~- and a~(i)c~(i) = 1 for all i. Note also that the unique extension 

of a to a map a: h* - -~  (hi) * satisfies a(L) C_ L ~ since ¢ maps group-like elements 

in D to group-like elements in D ~ 

Next we claim that 

(,)~ ((I)¢A, a j )  - (O~a(A), ao(j)) e 4zciZ/h 

for A E L , j  = 1 , . . . , n  and e = 4-. 

For, applying ¢ to the equation s~ejs_~ = q-(~-~,a~)ej  we obtain 

q (v-~'(~s)-(~/a(;~)'a~(~)) = 1 

which yields (*)_. Similarly applying ¢ to the equation t~ej t_~ = q(V+~,~)ej 

yields (*)+. 

Subtracting ( . )_  from ( .)+ gives (A, a j )  = (aA, ao(j)) since h ¢ izrQ. Thus a 

is an inclusion of Dynkin diagrams. In addition 

u(~, ~ )  - u ' (o (~) , .~ ( j ) )  = ( ¢ A , . j )  - (~'o~,  ~ (~ ) )  e 4 . i z / h  

which shows that p = °p~. 

The group F of automorphisms of the Dynkin diagram acts naturally on H = 

A2h/2~ .  We denote the stabilizer of p by Fp. 

COROLLARY: Fix  q,g and L. I f  p, p t E H then Dq,p-~(g) ~- Dq,(p,)-~(g) i f  and 

only i f  p = apt for some a E F. In addition AUtHopf Dq,v-1 (g) = NFp.  

3.5 We briefly consider Hopf algebra maps between multiparameter envelop- 

ing algebras. Here additional complications arise. Suppose D = Dq,p-1 (g) and 

D t = Dq,(p,)-~ ( f )  are multiparameter Drinfeld doubles and that a: D - -~  D t is 

induced by an inclusion of Dynkin diagrams such that p = apl. Let R and R I 

be the radicals of D and D t and set U = D / R ,  U t = D t / R  t.. In order for a to 

induce a map from U to U t we require a(ZL)  C ZL,. Now the condition that  

s~t~ belongs to ZL is that 

(1) u(A - ~, ~) - (~ + ~, ~) ~ a ~ i z / h  for all Z e L 

and this yields only that 

u ' (aA - art, a~)  - (aA + a#,  a~)  E 4~riZ/h for all ~/E L. 
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Thus a is unlikely to induce a map from U to U t unless a(L) = L t. 

There is another minor point. Suppose that (1) holds and that u ~ = u + u ~ 

where u' E Zh. Since u ' (A-  it,/3) E 4zriZ/h for all ~ C L, equation (1) holds with 

u replaced by u'. Thus the definition of ZL depends only on the image of u in 

A2h/Zh = H2(L, C*). However, it is not clear that the same can be said about 

the image of u in A2h/2h. 

We can avoid this difficulty by restricting our attention to the case where L/Q 

is cyclic. Then imitating the arguments in 3.4 we have 

THEOREM: Assume G is not simply connected of type D2~, ~ ~_ 2. Then for 

p,p' E H2( L, C*), Uq,p-1 (g ) TM Uq, (p , ) - I  (g ) if and only if p = °p' for some a E F. 

Moreover 

AUtHopf Uq,p-1 (g) -~ NFp. 

For the one-parameter case this recovers IT1, Theorem 2.1], see also [CM, 3, 

Corollary 4.3]. More details of the argument used in [T1] may be found in [T2]. 

Note, however, that when q is a root of unity there are more skew primitives than 

those given in [T2, Lemma 1.2.7]. Thus the group of Hopf algebra automorphisms 

of Uq(g) is still unknown when q is a root of unity. A version of Theorem 3.5 for 

g = sl(n) will appear in [C]. 

A related result is obtained in [B], which describes embeddings of quantum 

groups, in the sense of Hopf algebra surjections of their function algebras. Any 

such embedding can be obtained from those defined by an embedding of Dynkin 

diagrams by means of the adjoint action of the maximal torus of the embedded 

group. 

3.6 We show how the results of this section can be extended to Drinfeld doubles 

defined over arbitrary fields of characteristic zero. If H is a Hopf algebra defined 

over a field K,  and K C_ F is a field extension, we write H E for H ®K F.  

LEMMA: If  g and h are group-like elements of H then Pg,h (H)®g F -~- Pg,h(Hf). 

Proof." Left to the reader. 

Now with the notation as in 1.1, suppose that G is the connected simple 

algebraic group with Lie algebra g and character group L. Let F be a field of 

characteristic zero, and p: L x L ~ F* an antisymmetric bicharacter. We write 

D for the Hopf algebra over F generated as an algebra by group-like elements 
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s:,,t~ (A C L), (s,~, 1)-primitive elements ei and (1, t~ ) -p r imi t ive  elements fi 

subject to the requirements that  for all A E L and 1 _< i, j < n 

e i f  j -- f jei = ~ijqi( sa, - t-lc~, ), 

s~ejs_~ = q(~,~Dp(A, ~j)-2ej ,  

s~fjs_ ~ = q-(~'a~)p( A, aj )2 f j, 

t~eyt_~ = q(~'~)p(A, c~j)2ej, 

Ol - 2  t~fjt_~ = q-(~'~)p(;~, j) fS, 

(ad'~(ei)) 1-a'~ (ej) = O, i ¢ j, 

(adr(fi))l-a' j( f j)  = 0, i C j, 

and the elements {sAt~I(A, ~) ~ L x L} form a group isomorphic to L × L. 

In this situation, we claim there is a description of the coradical filtration of D 

which is analogous to that  given in Theroem 3.1. By the proof of Theorem 3.1, 

it is enough to describe the (g, 1)-primitive elements of D for g ¢ 1. The lemma 

allows us to assume that  F is the field generated over Q by q and the image of 

p. In this case since F is countable, there is a Q-linear embedding of F into C. 

Again, by the lemma we may replace F by C. Then there exists h E C* and 

u e A2h such that  q = e x p ( - h / 2 )  and p(A, #) = exp(-~-u(A, p)). Thus we have 

reduced our claim to the case considered in 1.6 and Theorem 3.1. 
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